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Build a PIC Beacon Clock

Just what is a PIC? Phil G4JCP provides the answers: 
As briefl y mentioned above in the copyright notice, 
Microchip Technology of Chandler, Arizona, make a range 
of semiconductor products but the product most familiar to 
electronics enthusiasts is their PIC range of microcontrollers.

A microcontroller is a microprocessor, which has, on the 
same piece of silicon, a clock generator, program memory, data 
memory and various peripheral devices. Microchip manufacture 
a wide variety of PIC microcontrollers, from 8-bit models, 
through to 16-bit models to high performance 16-bit Digital 
Signal Controllers. The 8-bit models are by far the most 
popular – and a number of the Mid-Range fl ash versions have 
become highly favoured by electronics enthusiasts.

Flash Memory
Flash memory is electrically erasable and programmable non-
volatile memory. Storing the microcontroller’s program in fl ash 
memory means that the same PIC can be reprogrammed many 
times over. In addition, fl ash PICs have a simple, two wire 
serial programming interface, making them easy to physically 
program. The devices themselves are relatively inexpensive and 
Microchip provides a free development environment,which runs 
on the Windows operating system.

There’s a bewildering array of PICs to choose from, mainly 
because commercial users of PICs always want maximum 
performance at minimum cost. Having a large number of 
different PICs available helps them achieve that objective. 
Electronics enthusiasts on the other hand, don’t have commercial 
pressures and neither do they have the buying power of big 
companies. 

So, constructional enthusiasts like us have settled on 
a relatively small number of PICs, which form a logical 
progression in terms of size and performance and are readily 
available. That’s not to say there’s no progress! Many 
enthusiasts are moving on to the higher performance 8-bit PICs 
and even on to the 16-bit ranges. 

The ‘original’ Flash PIC was the 18-pin PIC16F84. Now 

available in its suffi x ‘A’ guise, it’s an ideal entry level PIC 
due to its simplicity. However, there are now cheaper and more 
powerful PICs available, so it’s nowhere near as popular as it 
once was. The PIC used in the IBP Clock is a 16F871. This is a 
40-pin device, which has 2,048 words of program memory, 
128 bytes of data memory and 64 bytes of EEPROM. As it’s 
quite typical of the devices used by enthusiasts, it’s worth a 
closer look. 

Inside The 16F871
The diagram, Fig. 1, shows a simplifi ed block diagram of what’s 
inside the 16F871. Central to its operation is an 8-bit Reduced 
Instruction Set (RISC) microprocessor. Most microprocessors 
have so called complex instruction sets (CISC processors) and 
make use of a large number of instructions, which can vary in 
length, perform simple or complex operations and take varying 
lengths of time to execute.

Conversely, RISC processors use a small number of simple, 
fi xed length instructions, which execute in short, fi xed lengths of 
time. The RISC processor cores have a defi nite advantage over 
their CISC counterparts in that they can be implemented with 
quite small amounts of silicon. This makes them cheap, power 
effi cient and fast.

The RISC processors often use the Harvard architecture, in 
which program and data are stored in separate memories and 
accessed using separate buses. This improves performance over 
the traditional Von Neumann architecture where program and 
data share the same memory. Midrange PIC instructions are all 
single, 14-bit wide words. 

The PIC fetches each instruction in a single instruction 
cycle, and a two-stage pipeline overlaps fetch and execution of 
instructions. Consequently, all instructions execute in a single 
instruction cycle, except for program branches, which execute in 
two cycles.

An instruction cycle occupies four oscillator cycles, so a PIC 
with a 4MHz clock can execute one million (inline) instructions 
each second. In practice, PICs can be quite fast, especially when 
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clocked at their maximum speed, which in the case of the 16F871 
is 20MHz. That equates to fi ve million instructions per second, or 
one instruction every 200nS.

As can be see from Fig. 1, the Flash program memory is 
accessed independently of the internal 8-bit data bus. However, 
there’s a ‘back way’ into the program memory, which allows it 
to be read in a similar way to EEPROM data memory. It’s also 
possible for the 16F871 (and some other PICs) to reprogram the 
Flash memory while actually running a program. By the way 
– don’t get too concerned about the small amount of program 
memory, the code for the IBP l.e.d. clock, the l.c.d. clock and the 
l.e.d. repeater, all fi ts quite easily in 2K words!*

There are 128 bytes of RAM data memory. This is static 
memory, which retains its contents as long as there’s power 
supplied to the PIC. Incidentally, one particularly nice thing 
about the PIC is the inclusion of EEPROM in many devices. The 
EEPROM is nonvolatile data memory and it allows the PIC to 
‘remember things’ even in the absence of power, thereby allowing 
customised settings and the like to be retained through power 
down.

The 16F871 has three timer/counters. Timer 0 and the more 
versatile Timer 2 are both 8-bit timers, while Timer 1 is a 16-bit 
timer. Allied to the timers is the CCP Capture/Compare/PWM 
module, used for timing events and for generating a pulsewidth 
modulated output. This is very useful for engine management 
systems and the like. Most PICs also incorporate a ‘Watchdog 
Timer’. This timer, which has its own oscillator, runs independently 
of the rest of the PIC.

If the Watchdog Timer ever times-out whilst enabled, it 
instructs the Reset circuitry to reset the PIC. To prevent a timeout, 
the PIC must periodically execute a special ‘Clear Watchdog 
Timer’ instruction. The idea being that this instruction is placed 
where it should get repeatedly executed, such as in the main 
program loop. If the PIC ever gets stuck somewhere else in its 
program, the Watchdog will timeout, reset the PIC and restart the 
program!

*Note:  Readers who are not familiar with ‘computer speak’ 
may be confused with the upper case K. Many of us understand that 
it refers to Kelvin, a term related to temperature used in science. 
The term is also used to represent the nearest computer equivalent 
to 1,000, which is 1024 (or 210). Editor

Useful USART
Another very useful peripheral is the universal synchronous/
asynchronous receiver/transmitter or USART. This supports 
synchronous serial communications (like those used between 
the PC’s keyboard and motherboard), and the more familiar 
asynchronous serial communications used by modems and v.d.u.s. 

Even if an application doesn’t use serial communications, 
the availability of a serial interface is very useful during program 
development and debugging. As you may appreciate, it’s awkward 
to ‘see’ what’s happening to the program fl ow within a PIC 
(although there are ways and means), so sending a byte out of the 
serial port at strategic places in your program whilst monitoring 
them on a v.d.u., can help keep track of what’s happening.

Given the low cost of PICs, it’s tempting to use them as 
intelligent peripherals in more powerful systems. To this end, some 
PICs have a Parallel Slave Port or PSP. This module allows parallel 
communications between the PIC and another processor to be 
controlled by the other processor without the need for additional 
logic. Finally, many PICs incorporate analogue to digital converters 
and in the case of the 16F871, the A/D is a 10-bit, 8-channel 
converter.

Most of the peripherals I’ve mentioned need inputs and/or 

outputs (I/O). Rather than dedicate pins on the i.c. package to each 
peripheral (which would be wasteful if a peripheral wasn’t used), 
all input/output pins on a PIC can be used as general purpose I/O. 
They’re arranged in groups of up to eight I/O lines, and referred to 
as Ports A, B, C, D and E. However, pins that are also allocated to a 
peripheral cannot be used as general purpose I/O if that peripheral 
is in use. This must be borne in mind at the hardware design stage 
and is the reason why the beacon l.e.d.s in Figure 3 skip certain 
port pins.

The diagram, Fig 2, shows the pin-outs of the 16F871 and I’ve 
included the peripheral function of those pins, which are of interest 
in the IBP Clock project. For example, pin 6 – RA4/T0CKI – is 
I/O line 4 on Port A or alternatively it can be the external input to 
Timer 0.

Smaller Sibling
As I mentioned earlier, certain PICs have become very popular 
with electronics enthusiasts, the 16F871 being one of them. It has 
a smaller sibling in the 16F870, which is the same as the 16F871, 
except that it has no Parallel Slave Port. It’s available in a 
28-pin ‘Skinny DIP’ (0.3 inch pin spacing) package which occupies 
signifi cantly less space than the usual 0.6 inch spaced package.

Also in a 28-pin package is the 16F872, which is effectively 
a 16F870. However, this has an enhanced synchronous 
communications module instead of a USART.

If more memory is needed, then the 16F874 has twice the 
memory of the 16F871 and the 16F877 four times the memory. 
The 16F873 and 16F876 are the corresponding larger memory 
versions of the 16F870.

The nice thing about these PICs is that they’re pin compatible 
– providing they have the same number of pins, of course! In fact, 
many PICs are pin compatible, which allows designers to change 
processors without necessarily having to redesign p.c.b.s.

Down In Size
Going down in size, the 16F628 is an 18-pin device with many of 
the peripherals of the 16F870 but with fewer I/O pins. The 16F627 
is found in some PIC kits and that’s just a 16F628 but has 1,024 
words of program memory instead of 2,048 words.

Owing to their low cost and pin compatibility with the 
16F84, the 16F627 and 16F628 have become the new entry level 
PIC processors. Even though the 16F628 is quite small for a 
microcontroller, Microchip make even smaller - and cheaper - 
devices. Four of these are of interest to us.

First, on the choice list the 16F676, a 14-pin device with two 
timers, an analogue comparator and an 8-channel A/D converter. 
It has 1,024 words of program memory, 64 bytes of RAM and 
128 bytes of EEPROM. For applications that don’t need to handle 
analogue inputs, the 16F630 is the same as the 16F676 but without 
the A/D converter.

Finally on this topic, the smallest pair of PICs I’m going to 
mention are the 12F675 and its A/D-less sibling, the 12F629. These 
devices have just eight pins and yet contain the same peripherals 
as their 14-pin counterparts I’ve already described. All necessary 
support circuitry is inside these little PICs - even a 1% accurate 
4MHz oscillator – so all but two of their pins (remember PICs still 
need power) can be used as inputs or outputs.

Given their low cost, ease of programming and high 
integration, PICs open up the possibility of enthusiasts using 
microcontrollers in situations where previously they would not 
have been practicable. And I take the view that using PICs in 
Amateur Radio is little different to using a 741 op amp in place of 
a bunch of transistors! We’re just trading hardware for software, 
that’s all.

Now we’re ready to tackle the main project! - turn the page!
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B ack in December 2001/January 2002, PW 
published a design for an International Beacon 
Project Clock. It was a single-band design, 

which used l.e.d.s to indicate, in real time, which of the 
eighteen IBP beacons should be transmitting. Despite 
its simple function, the design required numerous 
i.c.s and was laborious to wire. A fi ve-band version, 
designed at the same time, was deemed too complex 
for publication.

A microprocessor based design was also 
considered but using universally available CD4000 
series logic chips was felt to be the better option. 
However, since the logic based design was published, 
Arizona Microchip’s PIC(tm) microcontrollers have 
enjoyed increasing popularity and numerous variants 
are now both inexpensive and widely available. In 
addition, there are several inexpensive kits currently 
obtainable, which allow electronics enthusiasts to easily 
experiment with – and physically program  –  a range of 
popular PIC devices.

This month a PICbased l.e.d. IBP Clock is described, 
which uses just two i.c. packages (albeit one has 40 
pins). In part 2, a version with a liquid crystal display 
will be featured, together with an associated l.e.d. 
repeater. (The latter allowing a l.e.d. display to be added 
to the l.c.d. unit.).

The Complete Circuit
The complete circuit of the l.e.d. clock is shown in 
Fig. 3. Both the PIC – a PIC16F871 – and the 
CD/HEF4060 oscillator/divider i.c. run from a +5V d.c. 
supply, provided by a standard 7805 three terminal 
regulator (IC2). The values of C5 and C6 are not critical, 
but C6 must be at least 330nF, while anything between 
10µF and 100µF will suffi ce for C5. Diode D1 offers 
protection from a reversed supply connection.

Just as in the original wired logic based design, 
the timebase for the clock uses a 32KHz  (See note in 
PIC introduction article) – actual frequency 32768Hz 
– miniature watch crystal and a CD/HEF4060 oscillator/
divider i.c. The stability of this oscillator is critical to 
the long term accuracy of the clock, so I’ve included 
R32 and C7 to provide extra supply decoupling. The 
oscillator section of the CD/HEF4060 is connected 
internally to a 15-stage binary counter and an output at 
2,048Hz is taken from pin 7 to drive the PIC’s Timer 0.

Trimmer capacitor C9 should be adjusted so that 
X2 resonates at exactly 32,768Hz. This can be checked 
in two ways. First, there’s a buffered 32,768Hz output 
available at pin 9, but do try to use a frequency counter 
with a 10 second (or longer) gate time. Alternatively, 
the period of the 2Hz output at pin 3 can be measured. 
It should, of course, be exactly 500,00µS. Please make 
sure your test equipment can measure to an accuracy 
of 1µS or better.

The buffered test points are essential because 
connecting anything to the oscillator circuit itself will 
cause a frequency shift due to the capacitance of the 
probe. Alternatively, simply set C9 to maximum and 
run the clock over a period of a few hours. See how it 
keeps time and adjust C9 accordingly.

The values of C8 and C9 are suitable for a crystal 
requiring a load capacitance of 12pF (a common value 
for 32KHz (see PIC intro note) watch crystals, as used 
in the prototype). If you use a crystal that requires 
a different load capacitance, then alter the values 
appropriately. Both C8 and C9 should be around twice 
the specifi ed load capacitance of the crystal, when 
adjusted. If C9 can’t quite pull a ‘12pF’ crystal exactly on 
to frequency, then a 10pF ceramic capacitor connected 
in parallel with the trimmer should solve the problem.

Many PIC-based designs that maintain real time use 
either the PIC’s own crystal (X1 in our case), or a 32KHz 
watch crystal connected to Timer 1’s internal oscillator. 
While both methods are valid, I prefer a separate 
oscillator.

Eighteen Beacon LEDs
As you can see from the diagram, the 18 beacon l.e.d.s 
(catering for the three minute IBP cycle) are driven 
directly by the PIC and resistors R1 to R18 should be 
chosen to give each l.e.d. the required brightness. 
Having a non-multiplexed array with individual resistors 
allows the use of different colour l.e.d.s, even if they 
have widely varying effi ciencies. To dim the l.e.d.s for 
say, night time use, all you have to do is simply switch 
in one or more forward-biased diodes (1N4002 or 
similar) in series with the l.e.d.s’ +5V supply.

According to the data sheet, PIC pins confi gured as 
outputs can source or sink up to 25mA. But like virtually 
all logic chips, PICs are more effi cient at sinking current 
than sourcing current. To keep the internal voltage drop 
to less than 0.5V (10% of supply), I only allow PIC pins 
to source up to 7mA and sink up to 15mA. So, it’s wise 
to limit the l.e.d. current to 15mA.

Most of the other resistors associated with the PIC 
are 10k� , a value that’s not critical; anything between 
4.7 and 15k�  is perfectly acceptable. I should mention 
that resistors that merely serve to pull inputs high or 
low (like R28 and R24 respectively) are not strictly 
necessary. However, all PIC I/O pins can be confi gured, 
under software control, to be either inputs or outputs.

Accidentally confi guring an input that happens to 
be tied directly to +5V or ground, as an output, can 
result in a large fl ow of current. Using an input resistor 
limits any unexpected current to a safe value. Resistor 
R35 performs a similar function, this time protecting the 
output of the CD/HEF4060.

Although input resistors should not be necessary 
once a design has been thoroughly tested, I still like to 
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keep them in circuit. Given that the IBP Clock may be used 
in places where there’s a signifi cant amount of r.f. energy 
fl oating around, it’s not impossible for this energy to 
disturb a PIC. In particular, most modern v.h.f./u.h.f. hand-
held transceivers can run up to 5W output and that kind of 
power at close range can interfere with many electronic 
devices, particularly if they’re not adequately shielded as 
we know to our cost with TV and radio receivers!

Resistors R19 to R23 are, of course, necessary, as 
switch S1 selects the required band by connecting the 
appropriate band input (normally pulled high) to 0V. The 
sixth position is used for turning all the beacon l.e.d.s off. 
Incidentally, if a two-pole switch is used here, the other 
half of the switch can be used with more l.e.d.s to provide 
illuminated band indications.

Switch S2 is the reset switch, which sets the clock 
to the beginning of a three minute cycle. The software 
effectively de-bounces S2 by providing a one second hold 
off period during which time further resets are inhibited. 
Try to press SW2 as close as possible to the start of a three 
minute cycle or maybe a fraction of a second early, which 
some people prefer to do*.

Editorial comment: Phil’s advice is very sound and I 
have had a prototype of the original wired logic beacon 
clock at home for some years and follow his tip by having 

the clock running fractionally (half a second or so) ahead 
of the correct time. It works well in practice and means the 
l.e.d. is illuminated just before the allotted time slot for the 
beacon the band you are monitoring. This technique helps 
the user recognise the high speed (22w.p.m.) Morse and 
alerts you what to expect (as the beacon l.e.d. is labelled 
with its callsign). G3XFD

 
The LED Repeater
Even though the l.e.d. repeater (featured in Part 2) is 
primarily designed to provide l.e.d. indications for the 
l.c.d. clock, it can also be driven from the l.e.d. clock. To 
prevent ground loops, the repeater has an optocoupler at 
its input. Consequently, no damaging fault currents can 
fl ow thorough the 0V rails.

Twin screened cable should be used to connect the 
repeater to the l.e.d. or l.c.d. clock, with the screen 
connected to protective earth rather than 0V, if possible. 
Only a single 2kΩ resistor is needed to limit the current fed 
to the optocoupler but I’ve split it into two equal resistors 
– R30 and R31 – for safety reasons. You’ll notice that a 
short circuit between either of the two repeater terminals 
to either 0V or +5V, will not cause more than 5mA to fl ow.

The l.e.d. and l.c.d. clocks communicate with the 
repeater using the PIC’s USART. Now although the PIC’s 
crystal frequency (X1) isn’t critical as far as running the 
l.e.d. clock is concerned, it does drive the USART’s baud 
rate generator and so directly affects the serial port’s 
transmission (and reception) speed. With the 4MHz crystal 
specifi ed, I’ve programmed the baud rate to be 4,808. 
That’s as close to 4,800 as the combination of crystal 
frequency and baud rate generator divisors will allow. 
Please, do remember that for the clock to communicate 
with the repeater, the PICs’ crystal frequencies must be the 
same, or at least very close. Why 4,800? The reason will 
be revealed next time!

The 4MHz crystal used in the prototype clock required 
a load capacitance of 20pF, hence the value of 22pF for 
C3 and C4. Actually, 22pF is on the low side as the series 
connection of C3 and C4 ought be close to 20pF. Many 
crystals specify a load capacitance of 30pF, in which case 
use 33pF or 47pF ceramic capacitors for C3 and C4. If in 
doubt, use 33pF.
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Fig. 1: The internal structure of the PIC family of microcontrollers.
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Fig. 2: The pin-out for the PIC used for this project.
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Pin Functions
The function of some of the PIC’s individual pins isn’t 
obvious, so I’ll run through them now. Pin 1 on the PIC is 
the microcontroller’s external reset input (and high voltage 
programming input), which is normally held at +5V. We 
have to momentarily short pin 1 to 0V to reset the PIC’s 
c.p.u. and peripherals.

Pin 26 is the USART’s receive input, and because it’s 
not used in this design, it’s held inactive (high) by R28. 
Pins 39 and 40 are used when physically programming the 
PIC. So, to allow in circuit programming (more about that 
later), it’s useful to confi gure these pins as inputs if at all 
possible.

At switch on, the IBP Clock’s software checks the 
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Fig. 3: The PIC clock and its external clock tick generator.
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voltages on pins 39 and 40 and these voltages are then 
used to determine the function of the PIC. The following 
table should make things clear.

Pin 40 Pin 39 PIC Function
+5V +5V l.e.d. Clock
+5V 0V l.c.d. Clock
0V +5V l.e.d. Repeater
0V  0V(Undefi ned - defaults to l.e.d. Repeater)

Now to pin 36. This pin is pulled low by R24, and serves 
two purposes; one Microchip’s and one mine. First, pin 
36 can be used as a low voltage programming input. This 
function is active on brand new devices as supplied by the 
factory. However, most of the PIC kits on the market use 
the PIC’s high voltage programming mode, which involves 
applying +12V to the reset input pin 1.

To prevent the low voltage programming mode being 
accidentally activated, it’s essential that pin 36 be held at 
0V the very fi rst time a new PIC is programmed. Unless 
specifi cally required, it’s advisable to disable the PIC’s low 
voltage programming option. (Please see the 16F871’s 
data sheet for more information).

In this design, pin 36 is used as a l.e.d. active high/low 
select pin. The circuit of Fig. 3 shows the l.e.d.s connected 
between the PIC pins and +5V. The l.e.d. drive is thus said 
to be active low, in that the PIC pin switches from +5V to 0V 
to illuminate the required l.e.d. However, if resistor R24 is 
taken to +5V instead of 0V (remember the warning above 
though), then the l.e.d. drive is reversed and the PIC pins 
will switch from 0V to +5V to illuminate the required l.e.d.

I’ve included this option, not to drive l.e.d.s but to 
directly drive ULN2804 and similar, open collector buffers. 
These devices (as used on the original hardware IBP Clock) 
can switch up to 500mA to ground from a 50V supply. So, 
if 15mA at 5V isn’t enough, then ULN2804s should provide 
more than suffi cient current. Of course, active high outputs 
can also drive discrete transistors and that’s another 
option. Just remember to use appropriate base resistors!

Finally, the three pins which belong to Port E (Port 
E only has three I/O pins) are unused and are left 

unconnected. During initialisation, the 
IBP Clock software confi gures them 
as outputs and sets them low. Anyone 
modifying the software can use these 
pins for their own purposes.

Programming The 16F871
April’s issue of PW featured a 
review of the Velleman K8048 PIC 
Programmer and Experimentation 
Board by G4JCP. This kit is eminently 
suitable for programming the 16F871.

If using this kit, you have two 
options. Either solder a 40pin d.i.l. 
socket (preferably turned pin) onto 
a piece of stripboard, and wire it as 
described in the kit’s documentation. 
Or you can program the PIC while it’s 
actually in circuit, in the IBP Clock. To 
do the latter, you’ll need to make a 
few simple modifi cations, as shown in 
Fig. 4.

First, resistors R25 and 26 need 
to be increased to 47kΩ. Next, wire 
a 1N4148 diode in series with R27. 
Four connections are then required 

between the IBP Clock and the K8048 board. These 
connections don’t have to be permanent, and in fact, the 
K8048 p.c.b. is laid out for a 5-pin connector that carries 
the required programming signals. Only four pins are 
used, the fi fth is a +5V supply, which isn’t needed as the 
IBP Clock has its own +5V supply.

The actual programming procedure is described in 
a ‘help fi le’ supplied with the K8048 kit. If you want to 
program your own PIC chip and are unfamiliar with the 
procedure, then I recommend you gain experience by 
fi rst programming the PIC supplied with the kit. There are 
two example programs and if both work as they should, 
then you can try the 16F871. (Please note my comments 
concerning computers made in the K8048 review, April 
PW).

Source Code & Hex File
The source code for the IPB beacon clock PIC project and 
the HEX fi le, which is used by the programming software, 
is available from http://www.g4jcp.freeserve.co.uk/ The 
HEX fi le should also be compatible with any commercial 
PIC programmer. Alternatively, ready programmed 16F871 
PICs are available from the Kit Radio Company - see the 
components list for details. Blank PIC chips are available 
from a number of sources, including Maplin. A search of 
the Internet will reveal others.

Comprehensive data on all PIC devices, development 
software and debugging tools, application notes and other 
documentation is freely available from Microchip’s website 
at: http://www.microchip.com/

Note: if you want to know more about any particular 
PIC device, then download its data sheet. And for 
additional information on mid-range PICs (like those 
mentioned in the introduction), get the PICmicro(tm) Mid-
Range MCU Family Reference Manual.

Prototype LED Clock
The prototype l.e.d. clock was built on a piece of 
stripboard, as shown in Fig. 5. Please note that the 
physical layout of the PIC and its surrounding components 
closely follow the layout of the circuit diagram. Of course, 
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Fig. 4:  The PIC can be programmed in-situ with these circuit modifi cations.
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the l.e.d.s are mounted elsewhere, and pins are fi xed in 
the stripboard at places corresponding to the cathodes 
of the l.e.d.s on the circuit diagram. Also notice that the 
l.e.d.s run in sequence, anticlockwise from pin 15 on the 
PIC.

When building the clock, please make sure you do 
double check everything! It’s a relatively simple circuit, 
but it’s also very easy to make a mistake on stripboard. 
When testing, make sure you have a stable +5V rail 
before inserting the i.c.s. Also, ensure those pins that are 
connected to either 0V or +5V (via resistor or not), really 
are connected to the proper voltage rail.

Assuming the PIC has been programmed correctly, 
the clock should work fi rst time. Ruling out wiring errors 
and faulty components, the only thing that can stop the 
clock working is the failure of one or both of the crystal 
oscillators.

The 32KHz oscillator can be checked by wiring a l.e.d. 
(plus a series resistor) between IC1 pin 3 to 0V. It should 
fl ash at 2Hz. To check the 4MHz PIC oscillator, either use 
a logic probe or an oscilloscope. Or simply use a general 
coverage receiver tuned to 4MHz. You may have to put the 
clock quite close to the receiver’s antenna to get a good 
signal.

As with all software projects, there may be bugs in the 
code. Always use the latest version, which will be made 
available at the web address mentioned above.

There may also be more features added to the code 
over time, so it’s worth checking the website even if you 
buy a ready programmed PIC. One last point, please don’t 
expect me to modify the code just because you want a 
particular feature included. The source code is on the ‘Net, 
so have a go yourself – It’s great fun!    ●

Components

Resistors  (All resistors 0.25W)
R1-18 300Ω minimum (see text)
R19-29 10kΩ
R30,31 1kΩ
R32,35 2.2kΩ
R33 10MΩ
R34 220kΩ
All resistors 0.25W

Capacitors
C1,2  100nF 50V ceramic
C3,4,8  22pF 50V ceramic
C5   47µF 16V electrolytic
C6,7  470nF 50V ceramic
C9  22pF fi lm dielectric trimmer
X1 4MHz HC-49/U (or low profi le) crystal
X2  32KHz miniature watch crystal
D1 1N4002
LED1-18  l.e.d.s to suit (see text)
IC1 PIC16F871-I/P [*]
IC2  7805
IC3  CD4060 or HEF4060
S1  Single-pole, 6-way rotary switch
S2  Single-pole, non-latching push-to-make 

switch

Stripboard, pins, wire, case to suit.

[*] Programmed PIC16F871-I/P microcontrollers for 
the PIC IBP Clock are available from: KRC, Unit 11, 
Marlbrough Court, Westerham, Kent. TN16 1EU. 
Tel: (01959) 563023, E-mail: kitradioco@aol.com. 
Price £7.99 all inclusive to UK addresses. 
(Overseas ‘phone or E-mail for quote.)

Fig.5: The prototype PIC 
clock controller.

Phil Cadman G4JCP writes: “The PW team and I are planning to present Part 2 of this project in the July issue of the magazine. In the 
meantime, as this is our fi rst PIC-based project, everyone involved in preparing it for you will be most interested to hear your comments 
and what you think of the idea. Please contact the PW offi ces or myself via g4jcp@btinternet.com or at 21 Scotts Green Close, Scotts 

Green, Dudley, West Midlands DY1 2DX.

In part 2, a version 

with a liquid crystal 

display will be 

featured, together 

with an associated 

l.e.d. repeater. (The 

latter allowing a 

l.e.d. display to be 

added to the l.c.d. 

unit.).

Build a PIC Beacon Clock
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