
 Practical Wireless, May 200724

Build a PIC Beacon Clock

Just what is a PIC? Phil G4JCP provides the answers:
As briefl y mentioned above in the copyright notice,
Microchip Technology of Chandler, Arizona, make a range
of semiconductor products but the product most familiar to
electronics enthusiasts is their PIC range of microcontrollers.

A microcontroller is a microprocessor, which has, on the
same piece of silicon, a clock generator, program memory, data
memory and various peripheral devices. Microchip manufacture
a wide variety of PIC microcontrollers, from 8-bit models,
through to 16-bit models to high performance 16-bit Digital
Signal Controllers. The 8-bit models are by far the most
popular – and a number of the Mid-Range fl ash versions have
become highly favoured by electronics enthusiasts.

Flash Memory
Flash memory is electrically erasable and programmable non-
volatile memory. Storing the microcontroller’s program in fl ash
memory means that the same PIC can be reprogrammed many
times over. In addition, fl ash PICs have a simple, two wire
serial programming interface, making them easy to physically
program. The devices themselves are relatively inexpensive and
Microchip provides a free development environment,which runs
on the Windows operating system.

There’s a bewildering array of PICs to choose from, mainly
because commercial users of PICs always want maximum
performance at minimum cost. Having a large number of
different PICs available helps them achieve that objective.
Electronics enthusiasts on the other hand, don’t have commercial
pressures and neither do they have the buying power of big
companies.

So, constructional enthusiasts like us have settled on
a relatively small number of PICs, which form a logical
progression in terms of size and performance and are readily
available. That’s not to say there’s no progress! Many
enthusiasts are moving on to the higher performance 8-bit PICs
and even on to the 16-bit ranges.

The ‘original’ Flash PIC was the 18-pin PIC16F84. Now

available in its suffi x ‘A’ guise, it’s an ideal entry level PIC
due to its simplicity. However, there are now cheaper and more
powerful PICs available, so it’s nowhere near as popular as it
once was. The PIC used in the IBP Clock is a 16F871. This is a
40-pin device, which has 2,048 words of program memory,
128 bytes of data memory and 64 bytes of EEPROM. As it’s
quite typical of the devices used by enthusiasts, it’s worth a
closer look.

Inside The 16F871
The diagram, Fig. 1, shows a simplifi ed block diagram of what’s
inside the 16F871. Central to its operation is an 8-bit Reduced
Instruction Set (RISC) microprocessor. Most microprocessors
have so called complex instruction sets (CISC processors) and
make use of a large number of instructions, which can vary in
length, perform simple or complex operations and take varying
lengths of time to execute.

Conversely, RISC processors use a small number of simple,
fi xed length instructions, which execute in short, fi xed lengths of
time. The RISC processor cores have a defi nite advantage over
their CISC counterparts in that they can be implemented with
quite small amounts of silicon. This makes them cheap, power
effi cient and fast.

The RISC processors often use the Harvard architecture, in
which program and data are stored in separate memories and
accessed using separate buses. This improves performance over
the traditional Von Neumann architecture where program and
data share the same memory. Midrange PIC instructions are all
single, 14-bit wide words.

The PIC fetches each instruction in a single instruction
cycle, and a two-stage pipeline overlaps fetch and execution of
instructions. Consequently, all instructions execute in a single
instruction cycle, except for program branches, which execute in
two cycles.

An instruction cycle occupies four oscillator cycles, so a PIC
with a 4MHz clock can execute one million (inline) instructions
each second. In practice, PICs can be quite fast, especially when

The Practical Wireless IBP
Beacon Clock (PIC Version) part 1
Phil Cadman G4JCP introduces the PW IBP Clock (PIC version): “Back in December 2001/January 2002, PW published a design for an International Beacon
Project (IBP) Clock. It was a single band design, which used l.e.d.s to indicate, in real time, which one of the eighteen IBP beacons was due to transmit
in its allocated time slot on 14.1, 18.110, 21.150, 24.930 or 28.2MHz. Despite its simple function, the design required numerous i.c.s and was laborious to
wire. A multiple band version that had been developed, was deemed too complex for publication but since then a programmable integrated circuit (PIC)
version has been developed and is presented here in Part 1.”

Pr
oj

ec
t

Important copyright information: The terms PIC and PICmicro are registered trademarks of Microchip Technology Inc. in the USA
and other countries. (Microchip Technology Inc. 2355 West Chandler Boulvard, Chandler, Arizon, AZ 85224, USA).

Editorial note: As this major PIC project is the very fi rst of its type in PW, Phil Cadman G4JCP and the Editorial team consider that
the following introduction to the device is entirely appropriate. Everyone involved in preparing and producing the article on behalf of
readers hope it will provide encouragement to anyone thinking of building the project! Rob Mannion G3XFD/EI5IW

Introducing The PIC

PIC Project.indd 24PIC Project.indd 24 28/3/07 10:31:0028/3/07 10:31:00

Practical Wireless, May 2007 25

clocked at their maximum speed, which in the case of the 16F871
is 20MHz. That equates to fi ve million instructions per second, or
one instruction every 200nS.

As can be see from Fig. 1, the Flash program memory is
accessed independently of the internal 8-bit data bus. However,
there’s a ‘back way’ into the program memory, which allows it
to be read in a similar way to EEPROM data memory. It’s also
possible for the 16F871 (and some other PICs) to reprogram the
Flash memory while actually running a program. By the way
– don’t get too concerned about the small amount of program
memory, the code for the IBP l.e.d. clock, the l.c.d. clock and the
l.e.d. repeater, all fi ts quite easily in 2K words!*

There are 128 bytes of RAM data memory. This is static
memory, which retains its contents as long as there’s power
supplied to the PIC. Incidentally, one particularly nice thing
about the PIC is the inclusion of EEPROM in many devices. The
EEPROM is nonvolatile data memory and it allows the PIC to
‘remember things’ even in the absence of power, thereby allowing
customised settings and the like to be retained through power
down.

The 16F871 has three timer/counters. Timer 0 and the more
versatile Timer 2 are both 8-bit timers, while Timer 1 is a 16-bit
timer. Allied to the timers is the CCP Capture/Compare/PWM
module, used for timing events and for generating a pulsewidth
modulated output. This is very useful for engine management
systems and the like. Most PICs also incorporate a ‘Watchdog
Timer’. This timer, which has its own oscillator, runs independently
of the rest of the PIC.

If the Watchdog Timer ever times-out whilst enabled, it
instructs the Reset circuitry to reset the PIC. To prevent a timeout,
the PIC must periodically execute a special ‘Clear Watchdog
Timer’ instruction. The idea being that this instruction is placed
where it should get repeatedly executed, such as in the main
program loop. If the PIC ever gets stuck somewhere else in its
program, the Watchdog will timeout, reset the PIC and restart the
program!

*Note: Readers who are not familiar with ‘computer speak’
may be confused with the upper case K. Many of us understand that
it refers to Kelvin, a term related to temperature used in science.
The term is also used to represent the nearest computer equivalent
to 1,000, which is 1024 (or 210). Editor

Useful USART
Another very useful peripheral is the universal synchronous/
asynchronous receiver/transmitter or USART. This supports
synchronous serial communications (like those used between
the PC’s keyboard and motherboard), and the more familiar
asynchronous serial communications used by modems and v.d.u.s.

Even if an application doesn’t use serial communications,
the availability of a serial interface is very useful during program
development and debugging. As you may appreciate, it’s awkward
to ‘see’ what’s happening to the program fl ow within a PIC
(although there are ways and means), so sending a byte out of the
serial port at strategic places in your program whilst monitoring
them on a v.d.u., can help keep track of what’s happening.

Given the low cost of PICs, it’s tempting to use them as
intelligent peripherals in more powerful systems. To this end, some
PICs have a Parallel Slave Port or PSP. This module allows parallel
communications between the PIC and another processor to be
controlled by the other processor without the need for additional
logic. Finally, many PICs incorporate analogue to digital converters
and in the case of the 16F871, the A/D is a 10-bit, 8-channel
converter.

Most of the peripherals I’ve mentioned need inputs and/or

outputs (I/O). Rather than dedicate pins on the i.c. package to each
peripheral (which would be wasteful if a peripheral wasn’t used),
all input/output pins on a PIC can be used as general purpose I/O.
They’re arranged in groups of up to eight I/O lines, and referred to
as Ports A, B, C, D and E. However, pins that are also allocated to a
peripheral cannot be used as general purpose I/O if that peripheral
is in use. This must be borne in mind at the hardware design stage
and is the reason why the beacon l.e.d.s in Figure 3 skip certain
port pins.

The diagram, Fig 2, shows the pin-outs of the 16F871 and I’ve
included the peripheral function of those pins, which are of interest
in the IBP Clock project. For example, pin 6 – RA4/T0CKI – is
I/O line 4 on Port A or alternatively it can be the external input to
Timer 0.

Smaller Sibling
As I mentioned earlier, certain PICs have become very popular
with electronics enthusiasts, the 16F871 being one of them. It has
a smaller sibling in the 16F870, which is the same as the 16F871,
except that it has no Parallel Slave Port. It’s available in a
28-pin ‘Skinny DIP’ (0.3 inch pin spacing) package which occupies
signifi cantly less space than the usual 0.6 inch spaced package.

Also in a 28-pin package is the 16F872, which is effectively
a 16F870. However, this has an enhanced synchronous
communications module instead of a USART.

If more memory is needed, then the 16F874 has twice the
memory of the 16F871 and the 16F877 four times the memory.
The 16F873 and 16F876 are the corresponding larger memory
versions of the 16F870.

The nice thing about these PICs is that they’re pin compatible
– providing they have the same number of pins, of course! In fact,
many PICs are pin compatible, which allows designers to change
processors without necessarily having to redesign p.c.b.s.

Down In Size
Going down in size, the 16F628 is an 18-pin device with many of
the peripherals of the 16F870 but with fewer I/O pins. The 16F627
is found in some PIC kits and that’s just a 16F628 but has 1,024
words of program memory instead of 2,048 words.

Owing to their low cost and pin compatibility with the
16F84, the 16F627 and 16F628 have become the new entry level
PIC processors. Even though the 16F628 is quite small for a
microcontroller, Microchip make even smaller - and cheaper -
devices. Four of these are of interest to us.

First, on the choice list the 16F676, a 14-pin device with two
timers, an analogue comparator and an 8-channel A/D converter.
It has 1,024 words of program memory, 64 bytes of RAM and
128 bytes of EEPROM. For applications that don’t need to handle
analogue inputs, the 16F630 is the same as the 16F676 but without
the A/D converter.

Finally on this topic, the smallest pair of PICs I’m going to
mention are the 12F675 and its A/D-less sibling, the 12F629. These
devices have just eight pins and yet contain the same peripherals
as their 14-pin counterparts I’ve already described. All necessary
support circuitry is inside these little PICs - even a 1% accurate
4MHz oscillator – so all but two of their pins (remember PICs still
need power) can be used as inputs or outputs.

Given their low cost, ease of programming and high
integration, PICs open up the possibility of enthusiasts using
microcontrollers in situations where previously they would not
have been practicable. And I take the view that using PICs in
Amateur Radio is little different to using a 741 op amp in place of
a bunch of transistors! We’re just trading hardware for software,
that’s all.

Now we’re ready to tackle the main project! - turn the page!

PIC Project.indd 25PIC Project.indd 25 28/3/07 10:31:0228/3/07 10:31:02

 Practical Wireless, May 200726

B ack in December 2001/January 2002, PW
published a design for an International Beacon
Project Clock. It was a single-band design,

which used l.e.d.s to indicate, in real time, which of the
eighteen IBP beacons should be transmitting. Despite
its simple function, the design required numerous
i.c.s and was laborious to wire. A fi ve-band version,
designed at the same time, was deemed too complex
for publication.

A microprocessor based design was also
considered but using universally available CD4000
series logic chips was felt to be the better option.
However, since the logic based design was published,
Arizona Microchip’s PIC(tm) microcontrollers have
enjoyed increasing popularity and numerous variants
are now both inexpensive and widely available. In
addition, there are several inexpensive kits currently
obtainable, which allow electronics enthusiasts to easily
experiment with – and physically program – a range of
popular PIC devices.

This month a PICbased l.e.d. IBP Clock is described,
which uses just two i.c. packages (albeit one has 40
pins). In part 2, a version with a liquid crystal display
will be featured, together with an associated l.e.d.
repeater. (The latter allowing a l.e.d. display to be added
to the l.c.d. unit.).

The Complete Circuit
The complete circuit of the l.e.d. clock is shown in
Fig. 3. Both the PIC – a PIC16F871 – and the
CD/HEF4060 oscillator/divider i.c. run from a +5V d.c.
supply, provided by a standard 7805 three terminal
regulator (IC2). The values of C5 and C6 are not critical,
but C6 must be at least 330nF, while anything between
10µF and 100µF will suffi ce for C5. Diode D1 offers
protection from a reversed supply connection.

Just as in the original wired logic based design,
the timebase for the clock uses a 32KHz (See note in
PIC introduction article) – actual frequency 32768Hz
– miniature watch crystal and a CD/HEF4060 oscillator/
divider i.c. The stability of this oscillator is critical to
the long term accuracy of the clock, so I’ve included
R32 and C7 to provide extra supply decoupling. The
oscillator section of the CD/HEF4060 is connected
internally to a 15-stage binary counter and an output at
2,048Hz is taken from pin 7 to drive the PIC’s Timer 0.

Trimmer capacitor C9 should be adjusted so that
X2 resonates at exactly 32,768Hz. This can be checked
in two ways. First, there’s a buffered 32,768Hz output
available at pin 9, but do try to use a frequency counter
with a 10 second (or longer) gate time. Alternatively,
the period of the 2Hz output at pin 3 can be measured.
It should, of course, be exactly 500,00µS. Please make
sure your test equipment can measure to an accuracy
of 1µS or better.

The buffered test points are essential because
connecting anything to the oscillator circuit itself will
cause a frequency shift due to the capacitance of the
probe. Alternatively, simply set C9 to maximum and
run the clock over a period of a few hours. See how it
keeps time and adjust C9 accordingly.

The values of C8 and C9 are suitable for a crystal
requiring a load capacitance of 12pF (a common value
for 32KHz (see PIC intro note) watch crystals, as used
in the prototype). If you use a crystal that requires
a different load capacitance, then alter the values
appropriately. Both C8 and C9 should be around twice
the specifi ed load capacitance of the crystal, when
adjusted. If C9 can’t quite pull a ‘12pF’ crystal exactly on
to frequency, then a 10pF ceramic capacitor connected
in parallel with the trimmer should solve the problem.

Many PIC-based designs that maintain real time use
either the PIC’s own crystal (X1 in our case), or a 32KHz
watch crystal connected to Timer 1’s internal oscillator.
While both methods are valid, I prefer a separate
oscillator.

Eighteen Beacon LEDs
As you can see from the diagram, the 18 beacon l.e.d.s
(catering for the three minute IBP cycle) are driven
directly by the PIC and resistors R1 to R18 should be
chosen to give each l.e.d. the required brightness.
Having a non-multiplexed array with individual resistors
allows the use of different colour l.e.d.s, even if they
have widely varying effi ciencies. To dim the l.e.d.s for
say, night time use, all you have to do is simply switch
in one or more forward-biased diodes (1N4002 or
similar) in series with the l.e.d.s’ +5V supply.

According to the data sheet, PIC pins confi gured as
outputs can source or sink up to 25mA. But like virtually
all logic chips, PICs are more effi cient at sinking current
than sourcing current. To keep the internal voltage drop
to less than 0.5V (10% of supply), I only allow PIC pins
to source up to 7mA and sink up to 15mA. So, it’s wise
to limit the l.e.d. current to 15mA.

Most of the other resistors associated with the PIC
are 10k� , a value that’s not critical; anything between
4.7 and 15k� is perfectly acceptable. I should mention
that resistors that merely serve to pull inputs high or
low (like R28 and R24 respectively) are not strictly
necessary. However, all PIC I/O pins can be confi gured,
under software control, to be either inputs or outputs.

Accidentally confi guring an input that happens to
be tied directly to +5V or ground, as an output, can
result in a large fl ow of current. Using an input resistor
limits any unexpected current to a safe value. Resistor
R35 performs a similar function, this time protecting the
output of the CD/HEF4060.

Although input resistors should not be necessary
once a design has been thoroughly tested, I still like to

Build a PIC Beacon Clock

The Practical Wireless IBP
Beacon Clock (PIC Version) part 1Pr

oj
ec

t

Don’t start unless you’ve read the introduction on the previous two pages!

PIC Project.indd 26PIC Project.indd 26 28/3/07 10:31:0228/3/07 10:31:02

Practical Wireless, May 2007 27

keep them in circuit. Given that the IBP Clock may be used
in places where there’s a signifi cant amount of r.f. energy
fl oating around, it’s not impossible for this energy to
disturb a PIC. In particular, most modern v.h.f./u.h.f. hand-
held transceivers can run up to 5W output and that kind of
power at close range can interfere with many electronic
devices, particularly if they’re not adequately shielded as
we know to our cost with TV and radio receivers!

Resistors R19 to R23 are, of course, necessary, as
switch S1 selects the required band by connecting the
appropriate band input (normally pulled high) to 0V. The
sixth position is used for turning all the beacon l.e.d.s off.
Incidentally, if a two-pole switch is used here, the other
half of the switch can be used with more l.e.d.s to provide
illuminated band indications.

Switch S2 is the reset switch, which sets the clock
to the beginning of a three minute cycle. The software
effectively de-bounces S2 by providing a one second hold
off period during which time further resets are inhibited.
Try to press SW2 as close as possible to the start of a three
minute cycle or maybe a fraction of a second early, which
some people prefer to do*.

Editorial comment: Phil’s advice is very sound and I
have had a prototype of the original wired logic beacon
clock at home for some years and follow his tip by having

the clock running fractionally (half a second or so) ahead
of the correct time. It works well in practice and means the
l.e.d. is illuminated just before the allotted time slot for the
beacon the band you are monitoring. This technique helps
the user recognise the high speed (22w.p.m.) Morse and
alerts you what to expect (as the beacon l.e.d. is labelled
with its callsign). G3XFD

The LED Repeater
Even though the l.e.d. repeater (featured in Part 2) is
primarily designed to provide l.e.d. indications for the
l.c.d. clock, it can also be driven from the l.e.d. clock. To
prevent ground loops, the repeater has an optocoupler at
its input. Consequently, no damaging fault currents can
fl ow thorough the 0V rails.

Twin screened cable should be used to connect the
repeater to the l.e.d. or l.c.d. clock, with the screen
connected to protective earth rather than 0V, if possible.
Only a single 2kΩ resistor is needed to limit the current fed
to the optocoupler but I’ve split it into two equal resistors
– R30 and R31 – for safety reasons. You’ll notice that a
short circuit between either of the two repeater terminals
to either 0V or +5V, will not cause more than 5mA to fl ow.

The l.e.d. and l.c.d. clocks communicate with the
repeater using the PIC’s USART. Now although the PIC’s
crystal frequency (X1) isn’t critical as far as running the
l.e.d. clock is concerned, it does drive the USART’s baud
rate generator and so directly affects the serial port’s
transmission (and reception) speed. With the 4MHz crystal
specifi ed, I’ve programmed the baud rate to be 4,808.
That’s as close to 4,800 as the combination of crystal
frequency and baud rate generator divisors will allow.
Please, do remember that for the clock to communicate
with the repeater, the PICs’ crystal frequencies must be the
same, or at least very close. Why 4,800? The reason will
be revealed next time!

The 4MHz crystal used in the prototype clock required
a load capacitance of 20pF, hence the value of 22pF for
C3 and C4. Actually, 22pF is on the low side as the series
connection of C3 and C4 ought be close to 20pF. Many
crystals specify a load capacitance of 30pF, in which case
use 33pF or 47pF ceramic capacitors for C3 and C4. If in
doubt, use 33pF.

RISC
Microprocessor

Flash
Program
memory

RAM
data

memory

EEPROM
data

memory

Timer
0

Timer
1

Timer
2

A/D

CCP

USART

reset

Clock
generator

Watchdog
timer

Port A

Port B

Port C

Port D

PSP

Port E

Clocks

Reset

Power
VDD

VSS

Internal
data bus

2k Words

128Bytes

64Bytes

WT3219

Fig. 1: The internal structure of the PIC family of microcontrollers.

WT3220

WT3232

P
IC

16
F8

71

MCLR/Vpp
RAO/ANO
RA1/AN1

RA2/AN2
RA3/AN3

RA4/TOCK1
RA5/AN4
RE0/AN5
RE1/AN6
RE2/AN7

VDD
VSS

OSC1/CLKIN
OSC2/CLKOUT

RC0
RC1
RC2
RC3
RD0
RD1

RB7/PGD
RB6/PGC
RB5
RB4
RB3
RB2
RB1
ABO/INT
VDD
VSS
RD7
RD6
RD5
RD4
RC7/RX
RC6/TX
RC5
RC4
RD3
RD2

1

20 21

40

Fig. 2: The pin-out for the PIC used for this project.

PIC Project.indd 27PIC Project.indd 27 28/3/07 10:31:0328/3/07 10:31:03

 Practical Wireless, May 200728

Pin Functions
The function of some of the PIC’s individual pins isn’t
obvious, so I’ll run through them now. Pin 1 on the PIC is
the microcontroller’s external reset input (and high voltage
programming input), which is normally held at +5V. We
have to momentarily short pin 1 to 0V to reset the PIC’s
c.p.u. and peripherals.

Pin 26 is the USART’s receive input, and because it’s
not used in this design, it’s held inactive (high) by R28.
Pins 39 and 40 are used when physically programming the
PIC. So, to allow in circuit programming (more about that
later), it’s useful to confi gure these pins as inputs if at all
possible.

At switch on, the IBP Clock’s software checks the

WM3213a

P
IC

16
F8

71

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

R26 10k
R25 10k
R18
R17
R24 10k

R16
R15

R14
R13
R12
R11
R28 10k

R10
R9
R8
R7

R27
10k

LED15
LED16

LED17
LED18

LED14
LED13
LED12
LED11

LED10

LED8
LED9

LED7

R30

1k R31

1k

+

-

R6
R5
R4
R3
R2
R1

LED6
LED5
LED4
LED3
LED2
LED1

R23 10k
R22 10k
R21 10k
R20 10k

R19 10k

S1

Band

X1
4MHz

C2

0µ1

C3

22p
C4
22p

C

B

A +5V

R29

10k

S2

Reset

C2 0µ1

To repeater

R1-R18 see text

0V

Fig. 3: The PIC clock and its external clock tick generator.

In Out

Com

IC2

7805

C5
47µ

D1
1N4002

C6

0µ47

+

-

8 to 30V

1 2 3 4

16 15 14 13

5 6 7 8

9101112

IC3 CD4060/HEF4060

R32
2k2

X2

32,768Hz
(32KHZ)

R33

10M

R34
220k

C8

22p (see text)
C9

22p (see text)

32,768Hz test

R35

2k2

B

C

A

C7
0µ47

2Hz test
point

point

WM3213b

16V

+5V

See text for an explanation of the term KHz

Fig. 3: The PIC clock and its external
clock tick generator.

Build a PIC Beacon Clock

PIC Project.indd 28PIC Project.indd 28 28/3/07 10:31:0428/3/07 10:31:04

Practical Wireless, May 2007 29

voltages on pins 39 and 40 and these voltages are then
used to determine the function of the PIC. The following
table should make things clear.

Pin 40 Pin 39 PIC Function
+5V +5V l.e.d. Clock
+5V 0V l.c.d. Clock
0V +5V l.e.d. Repeater
0V 0V(Undefi ned - defaults to l.e.d. Repeater)

Now to pin 36. This pin is pulled low by R24, and serves
two purposes; one Microchip’s and one mine. First, pin
36 can be used as a low voltage programming input. This
function is active on brand new devices as supplied by the
factory. However, most of the PIC kits on the market use
the PIC’s high voltage programming mode, which involves
applying +12V to the reset input pin 1.

To prevent the low voltage programming mode being
accidentally activated, it’s essential that pin 36 be held at
0V the very fi rst time a new PIC is programmed. Unless
specifi cally required, it’s advisable to disable the PIC’s low
voltage programming option. (Please see the 16F871’s
data sheet for more information).

In this design, pin 36 is used as a l.e.d. active high/low
select pin. The circuit of Fig. 3 shows the l.e.d.s connected
between the PIC pins and +5V. The l.e.d. drive is thus said
to be active low, in that the PIC pin switches from +5V to 0V
to illuminate the required l.e.d. However, if resistor R24 is
taken to +5V instead of 0V (remember the warning above
though), then the l.e.d. drive is reversed and the PIC pins
will switch from 0V to +5V to illuminate the required l.e.d.

I’ve included this option, not to drive l.e.d.s but to
directly drive ULN2804 and similar, open collector buffers.
These devices (as used on the original hardware IBP Clock)
can switch up to 500mA to ground from a 50V supply. So,
if 15mA at 5V isn’t enough, then ULN2804s should provide
more than suffi cient current. Of course, active high outputs
can also drive discrete transistors and that’s another
option. Just remember to use appropriate base resistors!

Finally, the three pins which belong to Port E (Port
E only has three I/O pins) are unused and are left

unconnected. During initialisation, the
IBP Clock software confi gures them
as outputs and sets them low. Anyone
modifying the software can use these
pins for their own purposes.

Programming The 16F871
April’s issue of PW featured a
review of the Velleman K8048 PIC
Programmer and Experimentation
Board by G4JCP. This kit is eminently
suitable for programming the 16F871.

If using this kit, you have two
options. Either solder a 40pin d.i.l.
socket (preferably turned pin) onto
a piece of stripboard, and wire it as
described in the kit’s documentation.
Or you can program the PIC while it’s
actually in circuit, in the IBP Clock. To
do the latter, you’ll need to make a
few simple modifi cations, as shown in
Fig. 4.

First, resistors R25 and 26 need
to be increased to 47kΩ. Next, wire
a 1N4148 diode in series with R27.
Four connections are then required

between the IBP Clock and the K8048 board. These
connections don’t have to be permanent, and in fact, the
K8048 p.c.b. is laid out for a 5-pin connector that carries
the required programming signals. Only four pins are
used, the fi fth is a +5V supply, which isn’t needed as the
IBP Clock has its own +5V supply.

The actual programming procedure is described in
a ‘help fi le’ supplied with the K8048 kit. If you want to
program your own PIC chip and are unfamiliar with the
procedure, then I recommend you gain experience by
fi rst programming the PIC supplied with the kit. There are
two example programs and if both work as they should,
then you can try the 16F871. (Please note my comments
concerning computers made in the K8048 review, April
PW).

Source Code & Hex File
The source code for the IPB beacon clock PIC project and
the HEX fi le, which is used by the programming software,
is available from http://www.g4jcp.freeserve.co.uk/ The
HEX fi le should also be compatible with any commercial
PIC programmer. Alternatively, ready programmed 16F871
PICs are available from the Kit Radio Company - see the
components list for details. Blank PIC chips are available
from a number of sources, including Maplin. A search of
the Internet will reveal others.

Comprehensive data on all PIC devices, development
software and debugging tools, application notes and other
documentation is freely available from Microchip’s website
at: http://www.microchip.com/

Note: if you want to know more about any particular
PIC device, then download its data sheet. And for
additional information on mid-range PICs (like those
mentioned in the introduction), get the PICmicro(tm) Mid-
Range MCU Family Reference Manual.

Prototype LED Clock
The prototype l.e.d. clock was built on a piece of
stripboard, as shown in Fig. 5. Please note that the
physical layout of the PIC and its surrounding components
closely follow the layout of the circuit diagram. Of course,

WM3212a

P
IC

16
F8

71

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

47k 47k

PGD
PGC

10k

1N4148

MCLR / VPP

0V

0V
In-circuit
programming
modifications

+5V

Fig. 4: The PIC can be programmed in-situ with these circuit modifi cations.

PIC Project.indd 29PIC Project.indd 29 28/3/07 10:31:0528/3/07 10:31:05

 Practical Wireless, May 200730

the l.e.d.s are mounted elsewhere, and pins are fi xed in
the stripboard at places corresponding to the cathodes
of the l.e.d.s on the circuit diagram. Also notice that the
l.e.d.s run in sequence, anticlockwise from pin 15 on the
PIC.

When building the clock, please make sure you do
double check everything! It’s a relatively simple circuit,
but it’s also very easy to make a mistake on stripboard.
When testing, make sure you have a stable +5V rail
before inserting the i.c.s. Also, ensure those pins that are
connected to either 0V or +5V (via resistor or not), really
are connected to the proper voltage rail.

Assuming the PIC has been programmed correctly,
the clock should work fi rst time. Ruling out wiring errors
and faulty components, the only thing that can stop the
clock working is the failure of one or both of the crystal
oscillators.

The 32KHz oscillator can be checked by wiring a l.e.d.
(plus a series resistor) between IC1 pin 3 to 0V. It should
fl ash at 2Hz. To check the 4MHz PIC oscillator, either use
a logic probe or an oscilloscope. Or simply use a general
coverage receiver tuned to 4MHz. You may have to put the
clock quite close to the receiver’s antenna to get a good
signal.

As with all software projects, there may be bugs in the
code. Always use the latest version, which will be made
available at the web address mentioned above.

There may also be more features added to the code
over time, so it’s worth checking the website even if you
buy a ready programmed PIC. One last point, please don’t
expect me to modify the code just because you want a
particular feature included. The source code is on the ‘Net,
so have a go yourself – It’s great fun! ●

Components

Resistors (All resistors 0.25W)
R1-18 300Ω minimum (see text)
R19-29 10kΩ
R30,31 1kΩ
R32,35 2.2kΩ
R33 10MΩ
R34 220kΩ
All resistors 0.25W

Capacitors
C1,2 100nF 50V ceramic
C3,4,8 22pF 50V ceramic
C5 47µF 16V electrolytic
C6,7 470nF 50V ceramic
C9 22pF fi lm dielectric trimmer
X1 4MHz HC-49/U (or low profi le) crystal
X2 32KHz miniature watch crystal
D1 1N4002
LED1-18 l.e.d.s to suit (see text)
IC1 PIC16F871-I/P [*]
IC2 7805
IC3 CD4060 or HEF4060
S1 Single-pole, 6-way rotary switch
S2 Single-pole, non-latching push-to-make

switch

Stripboard, pins, wire, case to suit.

[*] Programmed PIC16F871-I/P microcontrollers for
the PIC IBP Clock are available from: KRC, Unit 11,
Marlbrough Court, Westerham, Kent. TN16 1EU.
Tel: (01959) 563023, E-mail: kitradioco@aol.com.
Price £7.99 all inclusive to UK addresses.
(Overseas ‘phone or E-mail for quote.)

Fig.5: The prototype PIC
clock controller.

Phil Cadman G4JCP writes: “The PW team and I are planning to present Part 2 of this project in the July issue of the magazine. In the
meantime, as this is our fi rst PIC-based project, everyone involved in preparing it for you will be most interested to hear your comments
and what you think of the idea. Please contact the PW offi ces or myself via g4jcp@btinternet.com or at 21 Scotts Green Close, Scotts

Green, Dudley, West Midlands DY1 2DX.

In part 2, a version

with a liquid crystal

display will be

featured, together

with an associated

l.e.d. repeater. (The

latter allowing a

l.e.d. display to be

added to the l.c.d.

unit.).

Build a PIC Beacon Clock

PIC Project.indd 30PIC Project.indd 30 28/3/07 10:31:0628/3/07 10:31:06

